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Introduction to UFSDs

Motivation for UFSDs
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One bunch crossing with ~50
overlapping events recorded by the CMS
experiment in 2012

The situation will substantially change
at HL-LHC - the order of 150-200
events per bunch crossing

The time-dimension improves the
reconstruction process by considering
only time-compatible hits
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Discarding those hits that cannot be
associated to a track.

Particle Identification using Time-Of- (2)
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Introduction to UFSDs

UFSD for TOPSIDE at EIC

tector

<+ Low-Gain Avalanche Diode (LGAD)

e

= Internal gain layer (n*+- p*-p-p*+) P :é
% High E-field in gain region % %
+ Multiplication process ; f
= Provides gain of 10-70 w/o breakdown <

L)

*

Electron-Ion Collider: Polarized ep, eA collider

£ 4

= Centre of mass energies up to ~140 GeV

0,

»  Luminosity ~1033-1034 cm-2s-!
» Measurement and identification of particles -

£ 4

+ Silicon tracker + Calorimeter - 5D info
% Silicon sensor with time resolution ~ 10 ps

EVENT 11 y
Q2:10.71 GeVi2

» kaon-pion separation up to 7 GeV/c N
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Introduction to UFSDs

Timing Measurements

Time resolution of the Silicon detector can be expressed as contribution of,

2 2

_ 2 2 2 2
Oy = GTimeWalk + GJitter + GLandauNoise + O-Distortion + GTDC

R

characterized by signal at preamplifier output
and TDC binning

Time of arrival is set when signal crosses the
comparator threshold

R/
%

R

< Timing resolution is measured as RMS of the
timing difference (or TOF of a MIP) between
the device-under-test (DUT) and the trigger.
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< Timing capabilities of the silicon detector are
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Sensor

Pre-Amplifier

t, >_
Comparator

Time measuring circuit

A simple time-tagging detector
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Introduction to UFSDs

Timing Measurements

< Time Walk: the voltage value Vy, is reached at different
times by signals of different amplitude

threshold

S 7 | ,
TimeWalk dv/dt RS l_._l

discriminator signal for A

Constant fraction discriminator (CFD) with TOA defined [ discriminator signal for B
at % of signal amplitude reduces time-walk contribution

% Jitter: variation in time caused by the noise in the system

_ Noise l
OjJitter = dv/ds
The noise is summed to the signal, causing amplitude =i
variations

The predominant contribution to the timing resolution
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Introduction to UFSDs

Timing Measurements
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Charge depOSition along 1tS passage Lo - BBA amplifier, G ~ 20, various thicknesses

140 A

Decreases with thickness of the sensor o ]
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Jitter and Landau noise contribute almost equally

D
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< Distortion: The signal distortion is negligible in
silicon for the saturated drift velocity and uniform
weighting field.
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[oe]
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0 0.2 0.4 0.6 0.8 1
< TDC: The TDC effect is minimal in most of the cases CFD Fraction
I'DCy, Thinner Sensor => faster rise time => larger slew rate

1o =
TDC \/ﬁ

The time resolution is minimized by maximizing the
slew rate dV/dt of the signal and minimizing the noise

We need large and short signals!
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LGAD Test Setup

Y

< B-Telescope e

o

= Lab bench setup with Sr% source
% Single channel readout board
+ 10 X 10 cm?; impedance of 50Q)
= Wide bandwidth 2 GHz and gain 10
Total trans-impedance of 47000

The amplifier is followed by an external commercial
amplifier with gain 10

% Signal acquisition

= High Voltage Power Supply CAEN DT1471ET

» KEYSIGHT E3620A DC low voltage power supply

» KEYSIGHT DSOS204A infiniium 4-Channels
@ eicksyMeasuyrements at -30 °C using FP89-ME Julabo Chiller
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LGAD Measurement Setup
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LGAD Test Setup

Fermilab Test Beam Set-up

< Proton Beam with momentum 120 GeV
< Sensors HPK 1.2 (35pm), 3.1(50pm) were tested
< In collaboration with UCSC and BNL groups

Alignment Box

Shielding

8 XYZ movement
=
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8 LGAD Set-up




Results and Summary

Results and Summary
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Results and Summary

Results and Summary _.
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< Timing resolution for 3 layers of LGADs 2 - UFSD HPK1.2 @50m) 0 0
o 4 ]
< Timing resolution improves at low temperature but $ ¢ ]
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restricted by the lower breakdown voltage fg’ : ]
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% Very short rise time of ~350-400 ps were obtained : ]
25— —
< Achieved timing resolution of 14.31 * 1.52 ps
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Outlook

Argonne Micro-Assembly Facility - clean room

O

% Probe Station % Thermal Chamber

< Wire-Bonders < SmartScope ZIP for Metrology
\* 3D printer < ATLAS telescope and LGAD setup
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Ongoing Development

~

Designing a telescope structure for multichannel
readout system

Upgrading DAQ from software based CFD to
digitizer based: Beyond DSO trigger

R&D of LGAD sensors and modules
v/ Goal is to reach 10 ps of timing resolution
v/ Testing CFD read-out boards designed at
Argonne
v/ Monolithic LGAD simulations and
designing
Analysis of data collected at Fermilab test beam
facility with 120 GeV proton for different
AC-LGADs with multi-channel read-out boards.

Argonne is part of LGAD consortium for EIC J

Thank You!
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